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Pre-explosion heating of a drop of aqueous aerosol is considered for conditions 
where thermal conductivity and pressure gradients within the drop may be 
neglected. 

Intense heat liberation into a drop of aqueous aerosol can lead to attainment of the 
absolute instability temperature of water within the drop, followed by explosive destruc- 
tion [i]. Depending on the intensity of heat liberation, size of the drop, and other condi- 
tions, different variants of explosive destruction can be realized [2]. From the viewpoint 
of drop hydrodynamics we can distinguish two explosion regimes: in the one, thermal conduc- 
tivity within the drop is significant [3, 4], while in the other, pressure gradients and 
liquid motion (convection) within the drop play the major role [5]. We also have an isochoric 
regime (very rapid, over a time t o < ro/a , where r 0 is the initial drop radius and a is 
the speed of sound in water) with subsequent explosive ejection of liquid [6]. Aside from 
these three modes, there also exists a regime in which both temperature and pressure gradients 
within the drop can be neglected. Liquid motion will be produced by thermal expansion. The 
present study will consider the convective explosive drop heating regime. 

For sufficiently small drops (r 0 = i-i0 Dm) the approximation of a homogeneous optical 
field within the drop is valid [4]. With consideration of the dependence of the mean volume 
index of absorption a (m -I) on the density of water [7] a = ~0(p/p0) 2 the heat liberation 
function q(W/m ~) can be written in the following form: q = ~0(p/p0)2IoI(t), where I 0 is 
the characteristic radiation intensity: P0 is the initial density of the water; ~0 ( 104-105 
m -z for the infrared range [8]) is the initial radiation absorption coefficient; I(t) is 
a dimensionless function describing the form of the radiation pulse over time. We take the 
initial temperature of the surrounding air and drop equal to T o = 288.15 K, the initial pres- 
sure p~ = 1.01"i0 s N/m 2, then P0 = 999.0 kg/m 3, the specific volume v 0 = I/p 0 = 1.001"10 -3 m3/kg. 

It will be convenient to describe drop heating and evaporation using dimensionless vari- 
ables. We choose as characteristic quantities: the thermodynamic properties of water at 
the critical point [9] - density Pcr = 317.76 kg/m s, pressure Pcr = 221"15"i05 N/m2, tempera- 

ture Tcr = 647.27 K, enthalpy hcr= 2.0952-106 J/kg; dynamic viscosity and thermal conduc- 

tivity coefficients at T = 583 K (explosion temperature in the thermal conductivity regime 
[4]), q0 = 8-65"i0-s kg/(m.sec), X 0 = 0.522 W/(m.K); ratio hcr/Tcr for the specific heat of 
water C-; initial radius r 0 = i-i0 Dm; heat liberation intensity q0 = ~0(Pcr/P0)210, time 

t o = Pcrhcr/q0, velocity u 0 r0/t 0. 

The undimensionalized equations of conservation of mass, momentum, and energy for the 
spherically symmetric case can be written as [i0]: 
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Here t, r, u are dimensionless time, coordinate, and radial velocity component; q, I are 
dimensionless dynamic viscosity and thermal conductivity coefficients. 

The relative values of pressure, temperature, and specific volume (=i/0) are denoted 
by 4, T, ~p, as in thermodynamics [ii], the specific internal energy and enthalpy by E and 
h. The Euler number Eu and inverse Reynolds number Re -i define the ratio of the pressure 
and viscosity forces to inertial forces (velocity head); the Peclet number Pe is the ratio 
of the convective enthalpy flux to the thermal conductivity heat flux; the dimensionless 
parameters Ai, A 2 are the ratios of the characteristic specific kinetic u02 and elastic 
Pcr/Pcr energies to the characteristic enthalpy of the water hcr. 

For the equation of state of water we take Himpan's expression [12], obtained by use 
of experimental data at the boiling and critical points: 
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Here R = 8.314"10 a J/(kmole.K) is the universal gas constant, ~ = 18.015 kg/mol is the molar 
mass of water. The constants a, b, c, d, s are calculated in accordance with the critical 
parameters presented in [9]. Equation (2) is significantly more precise than the Van der 
Waals equation of Kuznetsov's approximation formulas [13] over a wide parameter range, in- 
cluding the critical point. On the other hand, this equation is significantly more simple 
and more convenient for applications than the international equation of state of water [9]. 

The conditions Eu = i, Pe = i, Re = 1 permit determination of characteristic veloci- 

ties: Up = /Pcr/Pcr = 264 m/sec, u I = 10Tcr/(Pcrhcrr0) = 0.507-0.0507 m/sec (for r 0 = 

i-i0 ~m), uq = q0/(Pcrr0) = 0.272-0.0272 m/sec - ux, which corresponds to characteristic 
heat liberation intensities: qp = Pcrhcrup/r0 = 1.75"1017-1.75"1016 W/m 3, at which the pres- 

sure gradient is comparable to the velocity head, and qk = 10Tcr/r02 = 3.38.1014-3.38-I0i2 

W/m 3, for which the thermal conductivity heat flux -%(ST/Sr) is comparable to the convective 
water enthalpy flux #uh. Analysis of conservation equations (i) with use of these estimates 
indicates that from the viewpoint of flow hydrodynamics and heat exchange within the drop 
the following five heating and explosion regimes can be distinguished: 

i) thermal conductivity, q0 ~ ql, u0 << ul, to ~ tl = r0/ul; 

2) thermal conductivity-convective, q0 ~ ql, u0 ~ uk, t o ~ tl; 

3) convective, qx ~ q0 << qp, ux << u0 << Up, tp = r0/u p << t o << tl; 

4) nonisobaric, q0 - qp, u0 ~ Up, t o ~ tp; 

5) isochoric, t o < t a = r0/a ' q0 > qa = Pcrhcra/r0 ~ i018-i017 W/ma. 

In regime 1 we may neglect the viscosity of the water, and linearization of Eq. (1.3) 
permits complete elimination of the convective term, with only thermal conductivity remain- 
ing. In regimes 1-3 the change in pressure with change in coordinate r within the drop can 
be neglected, while in regimes 3-5 thermal conductivity and viscosity can be neglected. Thus, 
friction and energy dissipation forces can be neglected for all explosive regimes just as 
for all evaporation regimes (see, for example, [14]). 

We will now turn to the convective regime. With regard to optical radiation intensity 
the convective regime is realized (at ~0 = 8"104 m-l) in the range: 4.2-101~ W/m 2 << 
I 0 << 2.2"i01a-2.2"i0i2 W/m 2. Since Eu >> I, the momentum conservation equation (1.2) is 
8p/Sr = 0. Consequently, the pressure within the drop depends only on time and is defined 
by the pressure Pd(t) on its surface. We find the latter from the equation of conserva- 
tion of momentum on the drop surface at r = rd: Pd + PdUd 2, where p~, p~, u~ are the pres- 

sure, density, and vapor velocity at the outer boundary of the Knudsen layer [15], the thick- 
ness of which is significantly less than r d. Evaporating molecules arrive in this layer 
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because of collisions with the equilibrium Maxwell velocity distribution. Neglecting the 
velocity head of the water and considering the shifts in pressure ps = fp(Ms and 
temperature Ts fT(Ms (where Ps(T d) is the saturated vapor pressure at the temperature 

of the drop surface Td;IMs us163 is the Mach number; u = 1.333 is the adiabatic index 

of the vapor, which we will consider an ideal gas; the functions fp(Ms f1(Ms being pre- 
sented in [15]), we obtain the final expression for the dimensionless pressure 

~ d ( ~ )  = ~s �9 ( 3 )  

We will note that the Mach number Ms and pressure ps are related by the isoentropic relation- 
ship [i0, 16] to the vapor pressure at infinity p~, where the vapor pressure may be considered 

?--I zero: p~/ps =(I~--~M~ v ~  This relationship for a specified surface temperature 

T d (consequently, for specified ps(Td)) defines the Mach number bis the vapor pressure at the 
outer boundary of the Knudsen layer ps and by Eq. (3), the dimensionless pressure at the 
drop surface vd(Td). We will also note that for T d ~ 397 K the number Ms = i, fp(1) = 0.243, 
it(1) = 0.813. Since in the given case the thermal conductivity of the water is insignifi- 
cant, it is natural to assume that the drop temperature is independent of coordinate r (this 
assumption is invalid only in a narrow layer near the drop surface of thickness 6 ~ r0/Pe). 
In this case the density (and specific volume) of the water are also independent of coordi- 
nate r. The water velocity for such homogeneous thermal expansion will be proportional to 
coordinate r and the rate of density decrease, as follows from the local mass conservation 
equation (i.I): 

r dp r d~ 

3p dt 3~ dt (4) 

The integral law of conservation of drop mass for varying radius rd(t) can be written 
in the physical variables (decrease in water mass equal to total vapor flux through the 
area of the drop surface): 

Ot o " " 

Here Jv = 0s163 = M~P~r163 is the specific vapor flow rate from the drop surface; u d 

is the water velocity at the drop surface. In dimensionless form Eq. (5) appears as 

drd nZ Pcrhcr , / ?bt 
V 

- QqOdM9 ~ ,  Q - -  
dt V'c s %% RTcr 

(6) 

The integral law of energy conservation for the drop can be written in the physical 
variables (change in total drop enthalpy equal to total energy supplied to drop from dis- 
tributed thermal source q(t), after subtraction of total thermal flux of vapor through 
drop surface): 

o . f = 4 
at ~ ~, 3 ( 7 )  

Here H = h + u2/2, Hs = hs + us are the total specific enthalpies of the water (within 
the drop) and vapor (at the outer boundary of the Knudsen layer). The last term on the 
right side of Eq. (7) neglects the thermal flux due to thermal conductivity and viscosity 
of the vapor, since the vapor velocity us is of the order of the speed of sound. Using mass 
conservation equation (5) and the definition of the latent heat of evaporation L = h s - 
hd, where h s is the vapor enthalpy in the saturated state and h d is the enthalpy of the 
water in the drop (both at the temperature of the drop surface Td), dimensionless equation 
(7) can be reduced to the form 

__ _ _  ML~_%~ [L ~ - -  
Cp(T) dT I( t )  3 .Q h s  3 ~ M f  ] 

cp dt cpz rd ]/~-~ t ~- 2 J '  ( 8 )  

Aa ~ ~RTcr /(~Lhtr ) ------ ~sA2- 
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The latent heat of evaporation L and enthalpies hs, hs = ft(Ms s are referenced to hcr , 
the specific heat of water at constant pressure Cp, to the ratio hcr/Tcr. The last term on 
the right side of Eq. (8) neglects the specific kinetic energy of the water udi/2. 

A difference in the temperature of the drop surface T d from the temperature T within 
the drop can have a significant effect on the amount of vapor flow due to the exponential 
dependence of the latter on temperature. Using Eqs. (7) and (1.3), it is simple to obtain 
the following expression for the temperature gradient in the water near the drop surface: 

aT I 
L ~ Pc (,) 

(9) 
( . (N) - -QS '~s  - ~ -  L+hs  A3 %N2~ A t -i-A~ rd Oatd 

+ - - U -  " 3 ot 

It has been considered here that the vapor thermal conductivity coefficient is signifi- 
cantly less than that of the water [9]. We will also note that the coefficients A i are 
small: A I << A 2 -~ 0.0332; A 3 = 0.190, so that the corresponding terms can usually be neglect- 
ed. We will not define the surface temperature. Near the drop surface we introduce an ex- 
panded coordinate Y = (r d - r)/s, ~ << i. From the equation of conservation of mass, Eq. 
(i.i), it follows that in the range considered, to the accuracy of ~s the water flow rate 
does not depend on coordinate Y: pu = PdUd . From the conservation of energy equation (1.3) 
we find that s = i/Pc, and the water temperature must satisfy the equation 

~zh + ~ Oz 
--: O('r d) ~r- gh,.j; g = pd rid. ( 1 0 )  OY 

The water enthalpy has a temperature dependence close to linear: h = h 0 + b0(~ - ~0) 
(b 0 -~ 1.35 [9]). We will write the solution of Eq. (i0): 

Assuming that the temperature ~ within the drop (as Y + ~) is known from the solution of 
Eq. (8), we obtain an implicit relationship for the surface temperature Td: 

= ~ - - ~ ( ~ ) / ( ~ b ~ ) .  (i2) 

Calculation results are presented in Figs. 1-4. Figure I shows the dependence of 4, 
% T on t for four heat liberation variants. Variant I corresponds to continuous radia- 
tion switched on instantaneously, or a pulse if we take I = 0 for t > I. Variants III and 
IV were used to model a radiation pulse in [5, 17] and [18] respectively. The constants 
in the heat libertion laws II-IV were chosen from the condition of constancy of the total 

energy density: S I(t)dt = i. Calculations were performed up to the moment when the ab- 

solute instability temperature was attained, a value of T A = 602-611K in the intensity 
range considered. Figure 1 also shows t dependences of 4, % T obtained without considera- 
tion of the change in water temperature upon approach to the drop surface, i.e., at T d = 
T (dash-dot curves). In this case the pressure within the drop is significantly higher, 
and the rate of change of temperature ~ and specific volume ~ are lower. In variants II-IV 
the absolute instability temperature is not achieved over the duration of the pulse (T A = 
0.931). With decrease in heat liberation intensity the drop begins to cool, continuing to 
evaporate. Thus, the dynamics of drop heating are affected significantly by the heat lib- 
eration rate and the form of the pulse I(t), especially its leading edge. Precise determi- 
nation of the drop surface temperature T d is important. 

Figure 2 shows heating diagrams 1-5 in the planes a) ~-qand b) n--r, encompassing the 
entire convective regime: Qp = 0.557 < Q < QI = 290-2900. The thermodynamic diagrams are 
determined not only by the energy-mass exchange parameter Q, but also the heat liberation 
rate: the higher the heat liberation rate, the higher lie the functions ~((p), ~(T) (for 
example, higher for variant I than for II-IV). The absolute instability temperature is 

reached on the spinodal C, which is specified by the equation 0~ 1 = 0. The spinodal 
T~COUSi 

is in the upper boundary of drop existence with regard to the thermodynamic parameters ~, 
% T, although explosive drop destruction can set in earlier due to formation of a water- 
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:Fig. 1. D imens ion less temperature T, s p e c i f i c  volume ~ ,  and 
pressure ~ vs. time for following heat liberation laws: I = 
I(t)~l; 

it~t2, O < t < t2, C~ = - -  
I I - -  I (t) = C 2 l exp [-- (t'? 2 -  l)'a/n], l > t~, 

:Ilia, O ~ l ~ l a ,  C a = : - -  
I I 1 - -  I (t) = Ca {exp [ - -  ( t / t~ - -  l ) /n] ,  t > ta, 

2 
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Energy-mass exchange parameter Q = 9.78 ( q o  = 1O I~ W/m a, 

r 0 = i ~m). Solid curves) T d from Eq. (12); dash-dot curves) 

T d a T. ~ 
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Fig. 2. Water state diagrams during heating in planes: a) 
z- ~ b) n-T; located in metastable liquid region between bi- 
nodal (B) and spinodal (C): i) Q + 0; 2) Q = 0.725; 3) 3.63; 
4) 36.3; 5) Q § =; D) initial state point (T O = 288.15 K, 
p~ = 1 atm, h 0 = 6.3.10 ~ J/kg, P0 = 999 kg/ma). 

vapor phase transition nucleus within the drop [ii]. The mean time of homogeneous nucleus 
formation t z can be estimated with the expression (in physical variables): 

J - ~  W ,  4 16nora 
tz-- Vd ; J = N 1 B e  - ~ ,  G - ~  k - - ~ '  V d = - - n ( r o q )  ~, W .  =- ( 1 3 )  

3 3 (p= - -  &)~ (1 - -  qV %)" 

Here N I ~ I0 2s m -3 is the number of molecules per unit volume of liquid; B ~ 10 I~ see -l is 
the kinetic factor; k is Boltzmann's constant, V d is the drop volume; W, is the work of 
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Fig. 3. Drop radius rd/r0, mass m/m 0, water velocity u d at 
surface, and vapor flow rate Jv vs. time up to explosion 
(solid curves) for heat liberation laws I and III (see notes 
to Fig. i). Energy-mass exchange parameter Q = 3.63 (q0 = 
1016 W/m 3, r 0 = 2.7 ~m, m 0 = 8.24.10 -i~ kg). Dash-dot lines, 
levels of characteristic velocity u 0 = 40.5 m/sec and Uef = 
r0qef/(Pcrhcr) = 16.4 m/sec for heat liberation laws I and 
III, respectively. Jv, I0~ kg/(m2"sec); Ud, 25 m/sec. 

~ I  I I I 

Fig. 4. Explosion time vs. inverse heat liberation inten- 
sity q0 -z.t, 10 -7 sec; q0-i'10 i5 W/m 3. 

critical nucleus organization; o is the water surface tension coefficient; ~v is the spe- 
cific volume of the vapor at temperature T. The last quantity, and thus, the time tz, has 
a very intense temperature dependence (several orders of magnitude per degree) and falls 
off rapidly with increase in water temperature. Explosive drop destruction sets in when 
the homogeneous nucleus formation time becomes less than the current physical time of the 
heating process. As would be expected, calculations show that the times of intense nucleus 
formation are close to the times at which the absolute instability temperature is reached. 
The differences between these times, a matter of several percent, can be explained by errors 
in the mathematical model (inaccuracy of the water equation of state (2), or the expression 
for nucleus formation time (13)). 

Figure 3 shows the time dependence of water velocity u d at the drop surface, vapor flow 
rate from the surface Jv, drop mass m/m 0 and radius rd/r 0. Due to thermal expansion the 
drop radius increases by 15-20%, while the drop mass decreases by several percent by the 
time of explosion. The drop explosion temperature Tex ~ 585-603 K. The drop surface tem- 
perature T d practically coincides with the temperature inside the drop T near the nonisobaric 
regime (Q ~ QD) and differs from it by almost 200 K near the thermal conductivity-convec- 
tive regime (~ ~ QI)" Correspondingly the vapor flow rate comprises Jv ~ i0 kg/(m2.sec) 

for Q " QI and Jv ~ 103 kg/(m2"sec) at Q " Qp. For heat liberation laws II and III with 
initial linear segment of intensity growth more accurate regime limits are given by the ef- 
fective characteristic intensity qef = q0Ci (as well as the velocity Uef = u0Ci) , where C i 
is the corresponding coefficient in laws II, III. 
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The drop explosion times calculated for the physical model described are close to ones 
established experimentally, ~(1-4)'10 -7 sec [17], as shown by the results presented in Fig. 
4. For all heat liberation laws considered, to a high degree of accuracy the explosion time 
depends linearly on the inverse intensity of heat liberation q0 -I (or qef-Z). These results 
lead to simple relationships for evaluating the explosion time t I = Pcr(hex - h0)<~>/q0 , 

tii,iii = Pcr/q0~2<~>hcr(hex - h0)C i for heat liberation laws I and II, III respectively (in 
the latter case for the condition that explosion set in on the linear portion of the growth 
in intensity I(t)). Here <~> is some mean value of the dimensionless specific volume of 
water during the heating process. If we change the formulation of the problem, fixing the 
characteristic time (pulse duration) and vary the radiation intensity, then for heat libera- 
tion laws II, III, as follows from conservation of energy equation (8), the explosion time 
will be proportional to the quantity q0 -I/2. 

In conclusion we will note that the approach described above establishes similarity 
in the problem of drop heating and explosion. In dimensionless variables the results ob- 
tained at r 0 = 1 ~m and q0 = 10z6 W/m3 will be identical to the results for r 0 = i0 Dm and 
q0 = 1015 W/m3, since the unique similarity parameter Q ~ 1/r0q 0 will be identical. 

NOTATION 

t, time; r, coordinate; a, radiation absorption coefficient; q, heat liberation inten- 
sity; I, radiation intensity; p, density; p, pressure; T, temperature; h, water or vapor 
enthalpy; P0, P~, To, h0, corresponding initial values; Pcr, Pcr, Tcr' hcr' corresponding 
critical values; p = i/~ , 7, ~, dimensionless density, pressure, and temperature of the 
water; Eu, Re, Pe, M, Euler, Reynolds, Peclet, and Mach number; Q, similarity parameter (heat- 
mass exchange); u, water or vapor velocity; rd, drop radius; Td, drop surface temperature; 
I(T), heat liberation law (pulse form) over time; J, nucleus formation frequency; G, Gibbs 
number. 

LITERATURE CITED 

i. A. V. Kuzikovskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 89-94 (1970). 
2. V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, and A. V. Kuzikovskii, High Power Laser 

Radiation in an Atmospheric Aerosol [in Russian], Novosibirsk (1984). 
3. A. P. Prishivalko, Kvantovaya, ~lektron., 6, No. 7, 1452-1458 (1979). 
4. A. P. Prishivalko, Optical and Thermal Fields within Light-Scattering Particles [in 

Russian], Minsk (1983). 
5. A. A. Zemlyanov and A. V. Kuzikovskii, Kvantovaya, Elektron., ~, No. 7, 1523-1530 

(1980). 
6. N. V. Buksdorf, A. A. Zemlyanov, A. V. Kuzikovskii, and S. S. Khmelevtsov, Izv. Vyssh. 

Uchebn. Zaved., Fiz., No. 5, 36-40 (1974). 
7. F. D. Feiock and L. H. Goodwin, J. Appl. Phys., 43, No. 12, 5061-5064 (1972). 
8. V. E. Zuev, Propagation of Visible and Infrared Waves in the Atmosphere [in Russian], 

Moscow (1970). 
9. M. P. Vukalovich, S. L. Rivkin, and A. A. Aleksandrov, Tables of Thermophysical Prop- 

erties of Water and Water Vapor [in Russian], Moscow (1969). 
i0. L. G. Loitsyanskii, Liquid and Gas Dynamics [in Russian], Moscow (1987). 
ii. V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, et al., Thermophysical Properties of 

Liquids in the Metastable State [in Russian], Moscow (1980). 
12. J. Himpan, Monatsh. Chem., 86, No. 2, 256-268 (1955). 
13. N. M. Kuznetsov, Zh. Prikl. Mekh. Tekh. Fiz., No. i, 112-120 (1961). 
14. O. A. Volkovitskii, Yu. S. Sedunov, and L. P. Semenov, Propagation of Intense Laser 

Radiation in Clouds [in Russian], Leningrad (1982). 
15. C. J. Knight, AIAA J., i__77, No. 5, 519-523 (1979). 
16. A. V. Butkovskii, Inzh.-fiz. Zh., 58, No. 2, 318 (1990). 
17. Yu. E.~Geints, A. A. Zemlyanov, V. A. Pogodaev, and A. E. Rozhdestvenskii, Opt. Atmo- 

sfery, i, No. 3, 27-34 (1988). 
18. A. Zardecki and J. D. Pendleton, Appl. Opt., 28, No. 3, 638-640 (1989). 

1006 


